Unified School District 327 School Bond Survey 2012

Prepared For
Unified School District 327 Administrators
Prepared By
The Docking Institute of Public Affairs
Fort Hays State University

Copyright © November 2012
All Rights Reserved

Fort Hays State University 600 Park Street Hays, Kansas 67601-4099
Telephone: (785) 628-4197
FAX: (785) 628-4188 www.fhsu.edu/docking

Gary Brinker, PhD Director

Jian Sun, PhD
Research Scientist

Michael S. Walker, MS
Assistant Director
Catherine Rockey Survey Center Director

Lynette Boys Administrative Specialist

Mission:
To Facilitate Effective Public Policy Decision-Making.
The staff of the Docking Institute of Public Affairs and its University Center for Survey Research are dedicated to serving the people of Kansas and surrounding states.

USD 327 School Bond Survey 2012

Prepared By:

Gary Brinker, Ph.D.
Director,
Docking Institute of Public Affairs

Prepared For:

USD 327 Administrators In pursuit of
The Docking Institute's Public Affairs Mission

Copyright © November 2012
All Rights Reserved

Table of Contents

Executive Summary 2
Methodology 4
Responses to Survey Questions 5
Individual Construction Projects Ranked by Likelihood 5
Highest Increase in Property Tax Supported 7
Bond Proposal 1: All Remodeling Projects 8
Bond Proposal 2: Everything but Gymnasiums 9
Bond Proposal 3: Only Full Competition Gym 10
Concern for Future Decisions Made by Kansas Legislature 11
Would Loss of State Assistance Impact Support? 12
Sets of 2 Construction Projects Ranked by Likelihood 13
Sets of 3 Construction Projects Ranked by Likelihood 14
Vote Prediction Models 15
Conclusions 17
Appendix A: Survey Instrument 19
Table of Figures
Figure 1: Top 6 Construction Projects by Mean Rating 5
Figure 2: Construction Projects 7-12 by Mean Rating 6
Figure 3: Highest Annual Increase in Property Taxes 7
Figure 4: Building Construction and Remodeling Options 8
Figure 5: All Projects Except the Gymnasiums, Full or Practice 9
Figure 6: Full Competition Gymnasium 10
Figure 7: Concerns Over Future Decisions of the Kansas Legislature 11
Figure 8: The Potential Loss of State Assistance 12
Table of Tables
Table 1: Ratings for Combinations of 2 Projects 13
Table 2: Ratings for Combinations of 3 Projects 14
Vote Prediction Model 1 15
Vote Prediction Model 2 16
Vote Prediction Model 3 16
Vote Prediction Model 4 17

Executive Summary

- The improvement projects that received the highest levels of support were HVAC/Windows, the Ag Class/Woodshop and the Science Lab. In addition to these, the kitchen equipment/remodel and Jr. High classroom remodel received a higher number of positive ratings than negative ratings among respondents.
- The projects that received the lowest levels of support were the two gyms and the enclosed front entrance. In addition to these, the tennis court/parking project received a higher number of negative ratings than positive ratings among respondents.
- With the specific list of projects involved left ambiguous, the highest amount of annual tax increase per \$100,000 of property value that over one half of respondents said they would be willing to support was $\$ 53.93$ assuming they "felt the expenditures were justified," which would support a bond of $\$ 3,000,000$. Forty-six percent of respondents said they would support an increase of $\$ 71.90$, which would support a $\$ 4,000,000$ bond.
- When asked specifically about a potential bond initiative that would include an agriculture classrooms/industrial arts-woodshop, air conditioning for EJSHS gym, classroom remodel (Science Labs), HVAC/windows updates, junior high classrooms (Vo-Ag remodel), kitchen equipment/remodel, and locker room remodels, requiring an additional $\$ 63.27$ in annual property tax per $\$ 100,000$, almost half (46.4\%) indicated that they would vote in favor, while 38\% said they would vote against this scenario. This, however, leaves 15% providing no firm opinion on how they might vote.
- When presented with a scenario whereby all of the improvement projects listed on the first page of the questionnaire were included except for the practice and competition gyms, requiring an annual tax increase of $\$ 84.48$ per $\$ 100,000$, only one-third (33.6\%) said they would vote in favor, while over half (53.7\%) indicated they would vote against such a bond. Although the two gyms were the least supported construction projects, these results reflect findings presented above showing that only about one-third of respondents said they would support an undefined bond involving this much of a tax increase.
- Considering that the gymnasiums garnered the least amount of support in the individual project ratings, and less than one-fourth of respondents indicated they
would be willing to pay the additional property taxes required to fund just a fullcompetition gym, it is not surprising that only 19% of respondents said they would vote for building only a competition gymnasium if it required a $\$ 127.69$ per \$100,000 annual tax increase.
- The degree to which concern over decisions of the Kansas Legislature affected willingness to support improvement projects varied widely among respondents, with one-fifth indicating it affected their willingness "quite a bit." The remaining respondents were divided between "some" concern and "not at all" concerned.
- After a brief description of the proposed cuts in state funding for school improvement projects, 40% of respondents said this factor would not affect their likelihood of supporting an improvement project. Just over one-third (35\%) said it would affect their likelihood of support "some," while the remaining one-fourth said it would affect their likelihood "quite a bit."
- A model was developed to assess the likelihood that any combination of improvement projects would pass or fail in a bond election was developed, which is simply the mean of the mean ratings for each construction item included in the combination. This method yielded highly congruent conclusions when compared to the results of the three survey questions asking about support for bonds with specific improvement projects. The model also would have predicted that the Summer 2012 bond would not passed.
- An estimate of support for any combination of 2 or 3 improvement projects, based on the method described in the previous bullet, can be found in the Tables 1 and 2 , respectively. All combinations of 4 or more projects are too numerous for a practical analysis. However, ratings for any combination of projects can be computed at the client's request.
- Of the four statistical models constructed to predict the outcome of a future bond election, one model predicts very well the outcome of the Summer 2012 bond election, while a second model predicts well the self-reported support for 2 of the 3 hypothetical bond scenarios. Determinations as to which model will best predict the outcome of a future bond election depend on assumptions of attitude changes that may have occurred among the voters as a result of a changing economic outlook and anticipated changes in state taxation policy.
- Both models described in the previous bullet predict a close election for Proposal

1. One predicts that Proposal 1 would pass; the other predicts that it would fail.

Methodology

In September of 2012, the Docking Institute of Public Affairs at Fort Hays State University contracted with Unified School District 327 to conduct a study to measure District voter support for a variety of prospective improvement projects identified as high-need by District administrators, as well as some opinions on school bond-related issues. The purpose of the study is to provide valid data to assist administrators in authoring a bond proposal that will best meet the educational needs of students in the District and have a high probability of passing in a bond election. The opinions and preferences for the various proposed improvement projects among likely voters are measured through a selfadministered survey delivered to all registered voters in the District via U.S. Postal Service.

The survey instrument (Appendix A) was constructed in cooperation with District administrators and designed to measure respondents' support for each individual improvement project, the amount of tax increase they would be willing to pay and their support for three specifically defined combinations of improvement projects. Survey questions also measured opinions on concern for school-related decisions made by the State Legislature and whether future loss of State assistance for school construction projects would impact current support.

The sample was provided by USD 327 which included the latest official list of registered voters in the District with their home mailing addresses. The Institute had the post office update the file to include recent moves, leaving a sample of 2,600 registered voters. It was assumed that likely voters among this population would also be more likely to respond to the survey. Surveys were mailed on October 25, and data collection was terminated on November 13, 2012, at which time 700 completed surveys had been returned for a response rate of 26.2%. Because all members of the target population were surveyed, there is no margin of error. The survey data were entered into an SPSS data file for analysis.

Responses to Survey Questions

Figure 1
The rating distributions for the various construction projects were rank ordered by the mean response (in brackets) to show the overall priorities among respondents. Figure 1 shows the top six most highly rated projects. Results suggest that HVAC/Windows, the Ag Class/Woodshop and the Science Lab are the most popular projects, with about half of respondents rating these items with at least $a+3$, and fewer than 20% rating them with -5 . The Kitchen Remodel and Jr. High Classroom construction projects were also rated highly, with over half of respondents rating these potential projects positively. Fewer than half rated the locker room remodel positively.

Figure 2

Figure 2 shows the 6 construction projects with the lowest mean ratings, with the two gym projects receiving the least amount of support. About half of respondents rated the competition gym with -5 , and just under half rated the practice gym with -5 . Just under one-third gave each gym a positive rating. Over one-third of respondents rated the tennis courts/parking and enclosed front entrance projects with -5 , with about one-third giving them a positive rating. The analysis suggests that any of these projects, or any combination of the four, would have very little chance of passing in a bond election. Opposition to the EES Blacktop project was somewhat stronger than support for the project. Roughly equal numbers of respondents supported and opposed A.C. for the EJSHS gym, but opposition to the project tended to be more extreme.

Figure 3

After briefly explaining how a school bond initiative affects property tax rates, respondents were asked to indicate "the highest annual property tax increase you would likely support, assuming you felt the expenditures were justified." Figure 3 shows that just under one-third (29\%) indicated that they would not support any tax increase at all. Seventy-one percent indicated they would support an increase of $\$ 53.93$ per $\$ 100,000$ of property value. Forty-six percent indicated they would support an increase of $\$ 71.90$. Only 38% indicated they would support a tax increase of 89.88 , while 29% indicated support for an increase of \$107.85.

Figure 4
Three school bond scenarios were presented to respondents, each listing the construction projects they would include and an estimate of the tax increase involved. After each description, respondents were asked if they would or would not vote for the described scenario. Figure 4 shows the results for a scenario that would include an agriculture classrooms/industrial arts-woodshop, air conditioning for EJSHS gym, classroom remodel (Science Labs), HVAC/windows updates, junior high classrooms (Vo-Ag remodel), kitchen equipment/remodel, and locker room remodels. These improvements would involve an estimated tax increase of $\$ 63.27$ per year for a $\$ 100,000$ home. Just under half (46.4 \%) of respondents indicated they would vote for this hypothetical bond. Just over onethird (38.1\%) indicated they would not. The analysis suggests that this hypothetical bond election would be very close, with those too undecided to indicate a preference in advance deciding the outcome. A mean rating of +0.44 , on the scale of -5 to +5 for this combination of projects, also suggests that it would be a close vote, but slightly more likely to pass than fail.

Figure 5

Respondents were presented with a hypothetical bond scenario whereby all projects except the practice and competition gyms were included at a tax rate increase of $\$ 84.48$. Figure 5 shows that only one-third of respondents said they would vote for this hypothetical bond scenario, while over half said they would vote against it. These results may seem counterintuitive, in that the two gyms were the lowest rated construction items when each project was rated individually, so one might assume a bond proposal not including these items would be more popular. However, only 35% of respondents had previously indicated that they would support a bond of up to $\$ 89.88$, so the results are highly congruent in this regard. A mean rating of -0.103 , on the scale of -5 to +5 for this combination of projects, also suggests that it would be a close vote, but slightly more likely to fail than pass.

Figure 6

Figure 6 shows that only about one-fifth of respondents indicated they would vote for a bond initiative that included only a full competition gym, assuming it would involve a tax increase of $\$ 127.69$ per year per $\$ 100,000$ in property value.
These results are intuitive for two reasons. First, the full competition gym was the second least popular construction item on the individual project ratings, with less than 30% of respondents rating this item positively. Over half rated this item with the maximum negative score of -5 . Second, only 23% of respondents indicated that they would be willing to spend up to $\$ 125.83$ in increased annual taxes per $\$ 100,000$ if they thought the construction was needed. A mean rating of -1.96 , on the scale of -5 to +5 for this project, also suggests that this particular bond would be highly likely to fail in an election.

Figure 7

When asked how concern over future decisions made by the Kansas Legislature impacted respondents' willingness to support an improvement project, respondents were fairly divided. Two-fifths indicated that future actions by the Legislature were not a factor in their willingness to support school improvements.
A similar proportion said this factor affected their willingness to support projects "some." One-fifth indicated that future legislative decisions affected their willingness to support an improvement project "quite a bit."

Figure 8

After being given a brief summary of the proposal by the Kansas Legislature to eliminate currently available financial assistance, respondents were then asked if this potential loss of State assistance would impact their willingness to support an improvement project. Focusing on the loss of state support caused a slight increase in concern, compared to the broad "future decisions" referenced in the previous question. The percent that were "not at all" concerned dropped slightly, while the percent that was "quite a bit concerned" increased by 5 percentage points. Over half of respondents expressed some degree of influence on their support for improvement projects as a result of potential loss of State assistance.

Support for Combinations of Projects

The table below presents all combinations of two projects, ranked by mean rating from -5 to +5 . The value can be interpreted as in indirect measure of the likelihood that a bond containing just those two construction projects would pass (positive numbers) or fail (negative numbers) in a general bond election.

ag	2.2595	ei	-. 1328	be	-1.3400
cg	2.1793	hj	-. 1601	fh	-1.3973
ac	2.0347	al	-. 2439	jl	-1.6430
gi	1.9163	bh	-. 2940	bl	-1.7727
ai	1.8066	cl	-. 3116	dh	-1.8089
ci	1.7628	fg	-. 3985	fj	-1.8844
gh	1.3467	af	-. 5166	hk	-1.9192
ah	1.1884	il	-. 5477	bf	-2.0361
ch	1.1334	cf	-. 5876	el	-2.1573
hi	. 8977	eh	-. 7134	dj	-2.3434
gj	. 8280	bj	-. 7738	jk	-2.4178
bg	. 7428	dg	-. 7835	ef	-2.4422
aj	. 7050	fi	-. 8003	bd	-2.4780
cj	. 6601	gk	-. 8756	bk	-2.5544
ab	. 5710	ad	-. 9394	de	-2.8613
bc	. 5030	cd	-. 9757	f	-2.8763
ij	. 4480	ak	-1.0211	ek	-2.9193
bi	. 3313	ck	-1.0711	dl	-3.2769
eg	. 2980	hl	-1.1544	kl	-3.3825
ae	. 1896	ej	-1.2104	df	-3.5626
ce	. 1194	di	-1.2330	fk	-3.6406
gl	-. 1204	ik	-1.3218	dk	-4.0271

Table 1
a Agriculture Classrooms and Woodshop
b Air conditioning EJSHS Gym
c Classroom remodel (Science Lab)
d Competition Gymnasium
e EES Blacktop
f Enclosed Front Entrance
g HVAC/ Widows
h Jr. High Classrooms
i Kitchen Equipment/Remodel
j Locker Rooms Remodel
k Practice Gym
I Tennis Courts/Parking

The table below presents all combinations of three projects, ranked by mean rating from -5 to +5 . The value can be interpreted as in indirect measure of the likelihood that a bond containing just those three construction projects would pass in a general bond election.

acg	3.2006		ail	.4648		bcl	-.8285		afl	-1.8584
agi	2.9524		bhi	.4391		adh	-.8380		bfh	-1.8833
aci	2.7805		acf	.4277		bfg	-.8836		aek	-1.8986
agh	2.3571		bgj	.3615		afj	-.8862		bjl	-2.1575
ach	2.1175		aeh	.2815		ahk	-.9323		adl	-2.2748
ahi	1.9045		adg	.2320		bil	-1.0305		bdh	-2.3148
agj	1.8635		afi	.2185		abf	-1.0426		akl	-2.3739
abg	1.7485		abj	.1817		bcf	-1.0928		bfj	-2.3839
bcg	1.6994		agk	.1621		ael	-1.1356		bhk	-2.4000
acj	1.6651		bcj	.1514		beh	-1.1788		adf	-2.5616
abc	1.5168		acd	.0229		bfi	-1.2697		afk	-2.6237
bgi	1.4808		bij	-.0228		bdg	-1.2743		bel	-2.6651
aij	1.4604		ack	-.0549		bgk	-1.3420		bdj	-2.8670
aeg	1.3359		ahl	-.1667		adj	-1.3481		bjk	-2.9146
abi	1.3110		beg	-.1677		ajk	-1.4064		bef	-2.9462
bci	1.2866		aej	-.1908		aef	-1.4172		adk	-3.0259
ace	1.1265		adi	-.2168		abd	-1.4847		bde	-3.3713
agl	.9232		aik	-.2942		bcd	-1.4985		bfl	-3.4024
aei	.9029		abe	-.3287		abk	-1.5419		bek	-3.4092
bgh	.9020		bce	-.3796		bck	-1.5793		bdl	-3.8135
ahj	.8246		afh	-.4055		bhl	-1.6451		bdf	-4.0976
acl	.7014		bei	-.5994		bej	-1.7026		bfk	-4.1489
abh	.6867	bgl	-.6025		bdi	-1.7344		bdk	-4.5457	
bch	.6445		bhj	-.6477		bik	-1.8034			
afg	.6382		abl	-.7813		ade	-1.8523			

Table 2
a Agriculture Classrooms and Woodshop
b Air conditioning EJSHS Gym
c Classroom remodel (Science Lab)
d Competition Gymnasium
e EES Blacktop
f Enclosed Front Entrance
g HVAC/ Widows
h Jr. High Classrooms
i Kitchen Equipment/Remodel
j Locker Rooms Remodel
k Practice Gym
I Tennis Courts/Parking

Vote Prediction Models

The purpose of this study is to provide information that will facilitate constructing a school bond that will both provide for the basic needs of District students and have a high probability of passing in a bond election. Two methods were developed utilizing the results of the failed 2012 bond initiative, as well as survey respondents' self-reported ratings of the various proposed improvement projects and likely voting behaviors when presented with three hypothetical bond scenarios, to predict the likely outcome of a future bond election. The tables below show how well the models predict whether respondents said they would vote for the three bond scenarios presented in the survey (pages 8, 9 and 10), as well as how well they would have predicted the outcome of the Summer 2012 bond election. The predictive validity of the model assumes that voters will be in a similar mind-frame as during the Summer 2012 election with respect to perceived needs of the District and willingness to pay a given increase in their property taxes. It seems likely to the researcher that perceived need is unlikely to change within a given year, but several forces could alter willingness to pay additional taxes, including opinions of the current and future health of the economy and anticipated changes in other forms of local, state and federal taxation.

Both methods compute a mean rating for each respondent based on the particular improvement projects included in the model and the ratings the respondent gave for each project. For each respondent, their ratings for each project in the model are summed, then divided by the number of projects, to arrive at a mean rating. This results in one rating for each respondent for the entire bond project. All of the respondents' project ratings are then summed and divided by the number of respondents to yield a "mean of means," or one overall rating on a scale of -5 to +5 for a given set of improvement projects or bond scenario.

The table for Model 1 presents the "mean of means" project ratings for the four bond scenarios in the third column. The fourth column shows the rating scale as a percentage of the entire range from -5 to +5 , with 0 being the halfway point. The fifth column shows the discrepancy between the percent voting, or saying they would vote, for that particular bond and the percent of the highest possible positive rating. The error statistics indicate that this model tends to overestimate the percent of respondents who said they would vote for the proposed bonds and the percent who actually voted for the bond proposed in the Summer 2012 election.

Model 1:

Compute mean rating of all projects in the proposal for each subject
Compute the mean of the mean ratings for each subject
Results in a positive or negative number reflecting the degree to which the proposal is likely to pass (+) or fail (-)

Models 2, 3 and 4 use the mean ratings of each respondent for all projects in the proposal, but does not compute the mean of all respondent mean ratings. Instead, these models compute the proportion of individual mean ratings that are above a given threshold. The models assume that respondents will tend to vote for a given bond if the projects included in the bond tend to include more of the ones they favor (rated positively), which is indicated by a positive mean rating. A negative mean rating means the bond included more projects the respondent felt were not needed (rated negatively), suggesting the respondent would be unlikely to vote for the bond. What is uncertain is how positive this mean score has to be before the respondent can reliably be expected to vote for the bond. It is assumed that, due to the increase in taxes involved, respondents would need to reach a relatively high positive threshold before committing to higher taxes. The next three models are based on this method, but assume 3 different rating thresholds, $+.75,+1.0$ and +1.5 , at which we can be confident the respondent will vote in favor of the bond.

Model 2:			
Compute mean rating of all projects in the proposal for each respondent			
Compute the percentage of cases with mean ratings greater than +.75			
Project Percent	Saying Vote For	Percent with mean ratings > . 75	Error
Survey Proposal 1 (pg 8)	46.4\%	53.3\%	+6.9
Survey Proposal 2 (pg 9)	33.6\%	44.9\%	+11.3
Survey Proposal 3 (pg 10)	19.1\%	27.0\%	+7.9
Summer Bond	37.4\% (actual)	36.3\%	-1.1

Model 2 assumes that the respondent's mean score for a given proposal must be at least +.75 before it can be reliably assumed that they would vote for it. The error column indicates that this model tends to overestimate the percent who would say they would support the three hypothetical bond scenarios described on pages 8,9 and 10 of the report. However, the model predicts within one percentage point the percent who did actually vote in favor of that bond proposed in the Summer 2012 election.

Model 3:			
Compute mean rating of all projects in the proposal for each respondent			
Compute the percentage of cases with mean ratings greater than +1.0			
Project P	Percent Saying Vote For	Percent with mean ratings > 1.0	Error
Survey Proposal 1	1 46.4\%	51.8\%	+5.4
Survey Proposal 2	2 33.6\%	42.2\%	+8.6
Survey Proposal 3	3 19.1\%	27.0\%	+7.9
Summer Bond	37.4\% (actual)	34.0\%	-3.4

Model 3 is similar to Model 2. The only difference is Model 3 assumes a higher threshold of +1.0 . before respondents would be likely to vote for a given bond. The Error column indicates that this model tends to underestimate the percent that voted in favor of the Summer 2012 bond, while still overestimating the percent that would vote for the three hypothetical bond elections.

Model 4:
Compute mean rating of all projects in the proposal for each respondent
Compute the percentage of cases with mean ratings greater than +1.5

Project	Percent Saying Vote For	Percent with mean ratings >1.5	Error
Survey Proposal 1	46.4%	44.0%	-2.4
Survey Proposal 2	33.6%	33.3%	-0.6
Survey Proposal 3	19.1%	25.2%	+6.1
Summer Bond	37.4% (actual)	26.0%	-11.4

Model 4 is also similar to Models 2 and 3 , but assumes a threshold of +1.5 before respondents would tend to vote for the various bond proposals. The Error column shows that this model predicts well whether respondents say they would vote for bond proposals 1 and 2, but would overestimate the percent who would vote for bond proposal 3. Note that this model also greatly underestimates the percent who voted in favor of the bond in the Summer of 2012 election.

Conclusions

Results of the analysis have shown that Model 2 best predicts the percentage favoring the bond from the Summer 2012 election, but Model 4 best predicts how people said they would vote in two of the three hypothetical bond elections presented in the survey. There are two possible explanations for this discrepancy. It is possible that the propensity to vote for a given list of improvement projects in a bond election has declined among the voters since last Summer, resulting in a higher current threshold to support a given bond. This could result from an overall decline in optimism over the economy or a perception that property taxes may go up in the near future even if the bond election does not pass. Another possibility is that people generally have a lower threshold at the ballot box when voting for a "real" bond than they have when filling out a survey with hypothetical bond proposals. If the former is true, the estimates for Model 4 should be the most valid, suggesting that Proposal 1 would be a close vote, but would be more likely to fail. If the latter is true, Model 2 should be the most valid, suggesting that Proposal 1 would be likely to pass. All four models predict that Proposals 2 and 3 would be unlikely to pass.

The key question is which model will best predict the outcome of a future bond election given the improvement components contained therein? The changes in state income tax policy were announced at roughly the same time as the Summer 2012 bond election, so it is difficult to determine whether this factor affected voting behavior at that time. One fifth of respondents said decisions by the Kansas Legislature would influence their decision on a bond issue "quite a bit," and 60% said it would influence their decision at least "some."

There was also weaker evidence of a national economic recovery at the time of the June election than when the survey was conducted in October. If people now feel economic recovery is more likely than they did in early June 2012, this should make them more likely to support a given bond. However, if they now suspect that the income tax cuts and anticipated deficits in the state budget will likely make property taxes go up, in addition to any bond-related increases, they may be more reluctant to vote for a given bond. Perhaps the two factors will offset each other, leaving respondents with a similar level of economic security and making them as likely to vote for a given bond as they were in Summer 2012. If this is the case, Model 2 should be valid and Proposal 1 should have a good chance of passing a future bond election.

Finally, an important factor in the decision to vote for a bond is cost. Respondents were told the approximate cost for each of the three bond Proposals. Proposal 1 offered respondents an estimated cost of $\$ 63.27$ per $\$ 100,000$. Of the respondents who said they would vote for Proposal 1, 70% said they would support a bond up to $\$ 71.90$, assuming they felt the expenditures were justified. However, 98% of respondents supporting Proposal 1 said they would support a bond as high as $\$ 53.93$. Simple interpolation would estimate that about 84% would say they would support a bond with a cost directly in between these two amounts, the cost of Proposal 1. However, if one assumes that the typical voter would tend to commit to a bit more for a well defined proposal with improvement projects which they support in an actual election, the data suggest that the cost would not deter the typical respondent from otherwise supporting Proposal 1.

Appendix A: Survey Instrument
 Survey Instrument

Next to each item listed, please indicate by circling the number on the scale indicating your personal level of support or opposition for each proposed need. See the back of the cover letter to read more about what each item involves and what it would cost.

When improvements are made to local public schools, it generally requires some increase in the amount of property taxes paid by local property owners. The table below shows the estimated annual increase in property taxes for a residence of $\$ 100,000$ for a given school bond. Please check the box indicating the highest annual property tax increase you would likely support, assuming you felt the expenditures were justified.

Amount of bond	Mill increase	Annual tax increase (\$100,000 residence)
$\$ 0$ (Would not support any school bond)	$\$ 0.00$	\square
$\$ 3$ million	3.75	$\$ 53.93$
$\$ 4$ million	5	$\$ 71.90$
$\$ 5$ million	6.25	$\$ 89.88$
$\$ 6$ million	7.5	$\$ 107.85 \square$
$\$ 7$ million	8.75	$\$ 125.83 \square$
$\$ 8$ million	10	$\$ 143.80 \square$
$\$ 9$ million	11.25	$\$ 161.78 \square$
$\$ 10$ million	12.5	$\$ 179.75 \square$
$\$ 11$ million	13.75	$\$ 197.73 \square$
$\$ 12$ million	15	$\$ 215.70 \square$

Please read the following potential proposals and tell us whether you would be most likely to vote for or against it in a future bond election.

A bond proposal includes: Agriculture Classrooms/Industrial Arts-Woodshop, Air Conditioning for EJSHS Gym, Classroom Remodel (Science Labs), HVAC/Windows Updates, Junior High Classrooms (Vo-Ag Remodel), Kitchen Equipment/Remodel, and Locker Room Remodels. The price is estimated at $\$ 3.52$ million dollars and would cost tax payers approximately $\$ 63.27$ per year for a $\$ 100,000$ home.
\square I would vote for this bond
\square I would vote against this bond

A bond proposal includes all projects listed on the previous page except the gymnasiums (Full or Practice). The price is estimated at $\$ 4.6$ million dollars, and would cost tax payers approximately $\$ 84.48$ per year for a \$100,000 home.
$\square \mathrm{I}$ would vote for this bond $\quad \square \mathrm{I}$ would vote against this bond

A bond proposal includes only a Full Competition Gymnasium. The price is estimated at $\$ 7.1$ million and would cost tax payers approximately $\mathbf{\$ 1 2 7 . 6 9}$ per year for a $\$ 100,000$ home.
$\square I$ would vote for this bond $\quad \square$ I would vote against this bond

Does concern over future decisions of the Kansas Legislature impact your willingness to support an improvement project?
\square Not at all $\quad \square$ Some $\quad \square$ Quite a bit

This year, USD \#327 qualifies for 25% assistance from the state government on bond projects which could be reduced or eliminated in the next legislative session. Does the potential loss of state assistance impact your willingness to support an improvement project?
\square Not at all $\quad \square$ Some $\quad \square$ Quite a bit

Thank you for taking the time to give us your opinions. The information you have provided will help us provide the best education possible for our children.

Eric Reid
Superintendent of USD 327

